Name	Date	Period
------	------	--------

1. The **height** h(t) meters of the tide above mean sea level on January 24th at Outer Harbor is modeled approximately by $h(t) = 3\sin(30t)$ where *t* is the number of hours after midnight.

a. Graph y = h(t) for $0 \notin t \notin 24$ (Label your x axis from 0 to 24 and determine how to break it up evenly)

FUNCTION:

		 		 	 	_				
ľ			y							
Î										
										x
										ļ

- b. When was high tide (MAX) and what was the maximum height (y-value at MAX)?
- c. What was the height at 2pm (y-value when x= 2pm or 14 hours after midnight)?
- d. If a ship can cross the harbor provided the tide is at least 2m above mean sea level, when is crossing possible on January 24? (give all time intervals when the y-value is 2m or greater between)

2. The model for the height of a light on a Ferris Wheel is $H(t) = 20 - 19\sin(120t)$ where H(t) is the height in meters above the ground, *t* is time in minutes.

a. How high is the light (y-value) at time *t*=0?

FUNCTION

- b. At what time was the light at its lowest (x-value of first MIN) in the first revolution of the wheel?
- c. How long does the wheel take to complete one revolution (what is the PERIOD)?
- d. Sketch the graph of the H(t) function over one revolution (graph 1 complete cycle).

				y									ĺ	ĺ	
													l	l	
														<u>r</u>	n <u>idlin</u>

3. The population of water buffalo is given by $P(t) = 400 + 250\sin(90t)$ where *P(t)* **is the number of** water buffalo and *t* is the number of years since the first estimate was made.

FUNC	HON:	·	 		 	 				
			y							
	•	•	 	•		 	 		n	<u>nidlir</u>

- a. What was the initial estimate (y-value when x-value = 0)?
- b. What was the population size (y-value) when:
 - I. 6 months (when x= 0.5 years)

.....

II. two years? (when x= 2 years)

- c. Find *P*(1). What is the significance of this value?
- d. Find the smallest population size and when it first occurs (first MIN).
- e. Find the first time interval when the herd exceeds 500 (first interval where y-values are greater than 500).

4. Over a 28 day span, the cost per liter of gas is modeled by $C(t) = 6.8\cos(22.5t) + 107.8$ *C(t)* is the cost in cents/liter at any given time, and t is time in days. Graph y= C(t) over 28 days

FUNCTION:														
			y										Y	
													n	nidlin
	••••••											•	•	
1			†										<u>.</u>	
				ПОN:У	ПОN: У	ПОN: У	ПОN: У	y y						

- a. True of false?
 - I. "The cost/liter oscillates about 107.8 cents with maximum price \$1.17."
 - II. "Every 14 days, the cycle repeats itself."
- b. What is the cost at day 7?
- c. On what days was the gas priced at \$1.10/liter?
- d. What is the minimum cost per liter and when does it occur?